Corticosterone potentiates ochratoxin A-induced microglial activation

Author:

Chansawhang Anchana1,Phochantachinda Sataporn2,Temviriyanukul Piya3,Chantong Boonrat4

Affiliation:

1. The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand

2. Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand

3. Institute of Nutrition, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand

4. Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand

Abstract

Abstract Microglial activation in the central nervous system (CNS) has been associated with brain damage and neurodegenerative disorders. Ochratoxin A (OTA) is a mycotoxin that occurs naturally in food and feed and has been associated with neurotoxicity, while corticosteroids are CNS’ physiological function modulators. This study examined how OTA affected microglia activation and how corticosteroids influenced microglial neuroinflammation. Murine microglial cells (BV-2) were stimulated by OTA, and the potentiation effects on OTA-induced inflammation were determined by corticosterone pre-treatment. Expressions of pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) were determined. Phosphorylation of mitogen-activated protein kinases (MAPKs) was analyzed by western blotting. OTA significantly increased the mRNA expression of IL-6, TNF-α, IL-1β, and iNOS and also elevated IL-6 and NO levels. Corticosterone pre-treatment enhanced the neuroinflammatory response to OTA in a mineralocorticoid receptor (MR)-dependent mechanism, which is associated with increases in extracellular signal-regulated kinase (ERK) and p38 MAPK activation. In response to OTA, microglial cells produced pro-inflammatory cytokines and NO, while corticosterone increased OTA-induced ERK and p38 MAPK phosphorylation via MR. Findings indicated the direct role of OTA in microglia activation and neuroinflammatory response and suggested that low corticosterone concentrations in the brain exacerbated neurodegeneration.

Publisher

Walter de Gruyter GmbH

Subject

Cellular and Molecular Neuroscience,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3