Insights into functional connectivity in mammalian signal transduction pathways by pairwise comparison of protein interaction partners of critical signaling hubs

Author:

Ramana Chilakamarti V.1

Affiliation:

1. Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, University of Massachusetts , Lowell , MA 01854 , USA

Abstract

AbstractGrowth factors and cytokines activate signal transduction pathways and regulate gene expression in eukaryotes. Intracellular domains of activated receptors recruit several protein kinases as well as transcription factors that serve as platforms or hubs for the assembly of multi-protein complexes. The signaling hubs involved in a related biologic function often share common interaction proteins and target genes. This functional connectivity suggests that a pairwise comparison of protein interaction partners of signaling hubs and network analysis of common partners and their expression analysis might lead to the identification of critical nodes in cellular signaling. A pairwise comparison of signaling hubs across several related pathways might reveal novel signaling modules. Analysis ofproteininteractionconnectome byVenn (PIC-Venn) of transcription factors STAT1, STAT3, NFKB1, RELA, FOS, and JUN, and their common interaction network suggested that BRCA1 and TSC22D3 function as critical nodes in immune responses by connecting the signaling hubs into signaling modules. Transcriptional regulation of critical hubs may play a major role in the lung epithelial cells in response to SARS-CoV-2 and in COVID-19 patients. Mutations and differential expression levels of these critical nodes and modules in pathological conditions might deregulate signaling pathways and their target genes involved in inflammation. Biological connectivity emerges from the structural connectivity of interaction networks across several signaling hubs in related pathways. The main objectives of this study are to identify critical hubs, critical nodes, and modules involved in the signal transduction pathways of innate and adaptive immunity. Application of PIC-Venn to several signaling hubs might reveal novel nodes and modules that can be targeted by small regulatory molecules to simultaneously activate or inhibit cell signaling in health and disease.

Publisher

Walter de Gruyter GmbH

Subject

Cellular and Molecular Neuroscience,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3