The effect of urban environment on large-scale path loss model’s main parameters for mmWave 5G mobile network in Iraq

Author:

Mezaal Mushtaq Talib1,Aripin Norazizah Binti Mohd1,Othman Noor Shamsiah1,Sallomi Adheed Hasan2

Affiliation:

1. Electrical and Electronics Department, Universiti Tenaga Nasional , Selangor , Malaysia

2. Electrical Department, University of Mustansruyah , Baghdad , Iraq

Abstract

Abstract The high speeds resulting from the use of millimeter waves (mmWave) in 5G mobile networks are accompanied by high path loss. The issue of generating a reliable propagation model of radio waves is crucial to the development of cellular networks since it reveals essential information regarding the properties of the wireless channel. The received signal strength, the coverage area, and the outage probability in certain places may all be determined through theoretical or empirical radio frequency propagation models, which offer essential valuable information regarding signal path loss and fading. This work analyzes a comprehensive three-dimensional ray-tracing method at 28 GHz for Najaf city, Iraq. The optimum path loss model for the city of Najaf is evaluated using the close-in (CI) model. On average, the values of the main parameters of CI model n n , X σ CI {X}_{\sigma }^{{\rm{CI}}} accomplished, respectively, 3.461866667 and 11.13958333. The lowest achievable path loss exponent was 3.0619 across all analyzed scenarios, while the highest possible value was 4.1253. The results of this work can serve as a baseline for mmWave measurement campaigns conducted in comparable conditions, and they provide a new avenue for future research into mmWave at 28 GHz in Iraq.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel pathloss prediction and optimization approach using deep learning in millimeter wave communication systems;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3