Design optimization of a 4-bar exoskeleton with natural trajectories using unique gait-based synthesis approach

Author:

Alateyah Abdulrahman I.1,Nejlaoui Mohammed1,Albadrani Mohammed1,Alrumayh Abdulrahman1,El-Hafez Hassan Abd12,Alrumayh Hisham A.1,Alomari Sufyan A.1,Alomayrini Abdulaziz H.1,Albazie Hamad H.1,El-Garaihy Waleed H.13

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Qassim University , Unaizah 56452 , Saudi Arabia

2. Production Engineering and Mechanical Design Department, Faculty of Engineering, Port-Said University , Port-Said 42523 , Egypt

3. Mechanical Engineering Department, Faculty of Engineering, Suez Canal University , Ismailia 41522 , Egypt

Abstract

Abstract Strolling is a complex activity that requires the synchronization of the brain, anxiety, and muscles, as well as rhythmic movement of the lower limbs. Gait may be abnormal if coordination is disrupted. As a result, exoskeletons should be used to treat it effectively. The connection and other systems contained in the exoskeletons could be used to mimic the behavior of the human lower leg. These mechanisms are created utilizing complex traditional methods. This study proposes a new gait-inspired method based on a genetic algorithm (GA) for synthesizing a four-bar mechanism for exoskeletons. For each phase of the gait, the trajectory is calculated and merged using optimization algorithms. Each phase of the trajectory passes through 10 precision points, for an entirety of 20 precision points in 1 gait cycle. For the problem under consideration, it is discovered that the GA outperforms other literature techniques. Finally, the proposed design for a lower limb exoskeleton is depicted as a solid model. Furthermore, the generated link-age accurately tracks all the transition points, and the simulation of the planned linkage for one gait cycle has been illustrated using a stick diagram.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3