CuO–Cu/water hybrid nonofluid potentials in impingement jet

Author:

Abdulwahid Ammar F.1,Kareem Zaid S.1,Balla Hyder H.2,Hashim Noora A.1,Abbud Luay H.3

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, University of Kufa, Kufa , Najaf , Iraq

2. Aeronautical Techniques Department, Najaf Technical Institute, Al-Furat Al-Awsat Technical University, Kufa , Najaf , Iraq

3. Air Conditioning and Refrigeration Techniques Engineering, Al-Mustaqbal University College , Hillah , Iraq

Abstract

Abstract The present study considered an impingement jet using hybrid nanofluid CuO–Cu/water. A single rounded nozzle was used to impinge a turbulent coolant (water) on the hot circular plate at Reynold’s number range of (5,000–15,000). CuO–Cu nanoparticles were physically synthesized at 50 nm size and dispersed by one-step preparation method. The experimentations were conducted with nanoparticle concentrations range of (0.2–1%) by volume. The results showed that the presence of hybrid nanoparticles exhibits a significant improvement in the overall thermal performance of the working fluid. Where the gained heat interpreted by the Nusselt number was found to be 2.8% (in comparing with deionized water) at ϕ = 1% and Re = 15,000, while the minimum gain in the heat was found to be 0.93% at ϕ = 0.2% and Re = 5,000. Furthermore, it was noted that the excessive increase in CuO–Cu nanoparticle concentration causes more pumping power consumption. Moreover, the CuO–Cu nanoparticles residual layer was found to be formed at a high CuO–Cu concentration, which acts as an insulation layer that hinders the heat exchange. It was also found that the threshold of nozzle-to-plate spacing is H = 4, before which, the heat gain is positive, and negative plummet after.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3