The nonlinear analysis of reactive powder concrete effectiveness in shear for reinforced concrete deep beams

Author:

Jaafar Azhar Ayad12,Yussof Mustafasanie M.1,Azeez Alyaa Abdulrazzaq2,Mezher Thaer Matlab3,Ali Blash Abrahem A.45

Affiliation:

1. School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300 , Pulau Pinang , Malaysia

2. Ministry of Education , Najaf , Iraq

3. Department of Structure and Water Resources, Faculty of Engineering, University of Kufa , Najaf , Iraq

4. School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia , Nibong Tebal 14300 , Pulau Pinang , Malaysia

5. College of Engineering Technology – Houn , Houn , Libya

Abstract

Abstract The aim of this article is to investigate the effect of using reactive powder concrete (RPC) for reinforcement concrete deep beams (CDBs) to study the shear effect by the numerical analysis. The method of finite element analysis model simulations using a program was used. The characteristics of RPC and the deep beam of reinforced concrete were obtained from previous scientific research. Non-linear analysis for two models of deep beams, one with RPC and the other without using it, was conducted to compare with experimental results from recent tests of deep concrete beams with RPC and loaded until failure. The data obtained from the specimens have many factors related to the effect of the strength and action of reinforcement CDBs such as shear load deflection, crack pattern, mode failure, and concrete strength. On the other hand, the mesh changing was investigated in terms of the maximum concrete strength and the running time by changing the mesh size to 50, 25, and 15. Models were simulated with a two-point load using a shear span-to-depth with an av/d ratio of 0.77. The difference in percentage deflection between the numerical and experimental models’ data was observed at 2.60 and 5.9% for concrete deep beam and RPC deep beam, respectively, and the maximum shear load was 2.27 and 5.40%. The importance of the outputs of this article lies in bridging the research gap of this new topic and identifying the shear behavior of deep beams reinforced with RPC due to the lack of research related to this topic. It was noted that the obtained data for finite element analysis are very consistent with the previous laboratory scientific research, while the error rate did not exceed 10%.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3