Forecasting changes in precipitation and temperatures of a regional watershed in Northern Iraq using LARS-WG model

Author:

Muhaisen Nasser Kh.1,Khayyun Thair Sh.1,Al Mukhtar Mustafa1,Hassan Waqed H.2

Affiliation:

1. Civil Engineering Department, University of Technology-Iraq , Baghdad , 10066 , Iraq

2. College of Engineering, University of Warith Al-Anbiyaa-Iraq , Karbala , 56001 , Iraq

Abstract

Abstract Regions characterized by an arid or semi-arid climate are highly susceptible to prospective climate change impacts worldwide. Therefore, evaluating the effects of global warming on water availability in such regions must be accurately addressed to identify the optimal operation policy of water management facilities. This study used the weather generator model LARS-WG6.0 to forecast possible variations in precipitation and temperature of the Mosul Dam Reservoir in northern Iraq. Future climate change was predicted using three greenhouse gas emission scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5) for four time intervals (2021–2040, 2041–2060, 2061–2080, and 2081–2100) using five Global climate models (GCMs): CSIRO-Mk3.6.0, HadGEM2-ES, CanESM2, BCC-CSM1-1, and NorESM1-M. The model’s calibration and validation were conducted using data from 2001 to 2020 from eight meteorological stations in the study area. The results showed that the weather generator model’s performance was outstanding in predicting daily climate variables. The results also showed that the highest increase in maximum and minimum temperatures was 5.70°C in July and 5.30°C in September, respectively, for the future period 2081–2100 under RCP8.5. The highly forecasted minimum and maximum temperatures were extracted from the CanESM2 and HadGEM2-ES GCM models. It was demonstrated that the study region would experience different patterns of precipitation change during the wet seasons in the evaluated periods. Finally, the variations in precipitation and temperatures in the Mosul dam region would significantly impact the amount of freshwater obtained in these areas due to rising loss rates of evaporation. This could lead to a water shortage and mismanagement of the sustainable operations of the dam.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3