Affiliation:
1. Civil Engineering Department, College of Engineering, University of Basrah , Basrah , Iraq
Abstract
Abstract
This article focuses on the United States Bureau of Reclamation (USBR) Type II stilling basin, which has chute blocks, an end dentated sill, and a flat floor. USBR provides general design criteria to contain the hydraulic jump within the stilling basin. The sequent depth ratio, energy dissipation ratio, and stilling basin dimensions of the hydraulic jump are changed when the bed slope of USBR II stilling basins is changed. This study aimed to investigate the effects of adverse slope on the performance of USBR II stilling basin in terms of sequent depth ratio and energy dissipation. Six discharges ranging from 8 to 33 lps were applied to the USBR II stilling basin with bed slopes (S) of −0.085, −0.055, −0.035, and 0. Results demonstrated that for Q = 13 and 8 lps, the basin performs better than other models with S = −0.085, increasing energy dissipation by about 10% compared to a typical basin due to the formation of a free hydraulic jump downstream dentated end sill. On the other hand, the floor downstream of the dentated end sill needs more protection against this free jump, and this case becomes economically expensive. In other cases, the downstream jump was submerged, resulting in a counterintuitive current and reverse roller based on the submerged ratio, reducing the effectiveness of the stilling basin. In addition, the modified design of the stilling basin resulted in a shorter effective length that included the hydraulic jump downstream spillway, thereby reducing internal friction. As a result, the standard USBR II with a flatbed is less expensive and more efficient than the adverse slope basin.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering