An investigation of self-sensing and mechanical properties of smart engineered cementitious composites reinforced with functional materials

Author:

Al-Dahawi Ali Majeed1,Abdullah Raid D.2,Joni Hasan Hamodi1

Affiliation:

1. Civil Engineering Department, University of Technology-Iraq , Baghdad , Iraq

2. Quality Assurance and University Performance Department, University of Technology-Iraq , Baghdad , Iraq

Abstract

Abstract In this study, hybrid functional fillers were used to create an electrical network that is used to develop self-damage sensing ability within conventional cementitious mixtures. This electrical network was used to examine the self-sensing properties of cementitious composites under different loading scenarios such as compression, splitting tensile, and cyclic loading for three ages, those are 7, 14, and 28. With the help of a single type of functional filler or fiber, the self-sensing capabilities of the majority of previous works are demonstrated. This study incorporates two types of functional fillers for sustainability and low cost: micro-scale carbon fibers (CF) and waste iron (Ir) powder in the form of microparticles. The purpose of the current work is to fill up the subject’s gap using two different types of functional fillers as a hybrid form. Three hybrid proportions of a micro-scale CF (vol% of mixture) and waste iron powder (Ir) (wt% of cementitious materials) are utilized. These are (0.33, 15), (0.67, 10), and (1.00, 5), respectively. Unlike carbon-based materials, polyvinyl alcohol is used as a mechanical reinforcing fiber 2% by volume of the cementitious mixture. Additionally, a control combination without any fillers has been created. The electrical resistivity of the fabricated samples was monitored during various loading applications for every second to confirm their self-sensing capabilities. Regarding the fractional change in electrical resistivity, the self-sensing behavior was superior for mixes containing high dosages either of waste iron powder or CF in the same hybrid matrix. Quite the contrary to that, the piezoresistivity was modest in the middle hybrid ratio.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3