Compatibility between delay functions and highway capacity manual on Iraqi highways

Author:

Mahdi Mohammed Bally1,Alrawi Areaj Khairy2,Leong Lee Vien3

Affiliation:

1. Department of Architecture Engineering, College of Engineering, AL-Muthanna University , Samawah , Al Muthanna Province, 66001 , Iraq

2. Center of urban and Regional Planning for Postgraduate Study, University of Baghdad , Aljadreah , Baghdad, 10001 , Iraq

3. School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Engineering Campus , Nibong Tebal , Penang, 14300 , Malaysia

Abstract

Abstract Volume delay functions (VDFs) are mathematical relationships used by the traffic allocation step of demand forecasting models to take into account the effect of increased traffic flow on the time spent to travel each possible route between different travel sources and destinations. The VDF is usually applied in static traffic assignment to describe the resultant link travel times, as a function of flow and capacity and free-flow travel time. This study aims to investigate the interface between the delay functions used by demand forecasting models and the highway capacity manual (HCM) model flow-speed relationships. The most commonly used VDFs in transport demand modeling packages in the literature were identified. The Bureau of Public Roads (BPR), conical functions (CF), Akçik and Troutbeck function (ATF), and delay logistics function (LF) were described. The four VDFs and the current HCM models were calibrated for the Iraqi road environment, and their compatibilities were examined. Results show that the best adjustments were obtained using the BPR function (quadratic error 0–0.012) and LF (quadratic error 0–0.002). The roles of CF and ATF were used with care, as both appear to neglect the delay in the condition of small to medium traffic patterns typical to country roads. Particularly, in response to single-lane roads, the LF has proven to be useful due to its potential to represent significant delays for low traffic flows and simultaneously produce more delays in congestion conditions; furthermore, the effect of flow as well as intersection spacing is obviously nonlinear. As flow reaches 600 pcu/h/lane, running time increases quickly. With more intersections per kilometer, the impact is obviously greater.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3