Numerical studies of the simultaneous development of forced convective laminar flow with heat transfer inside a microtube at a uniform temperature

Author:

Hamad Raisan F.1,Smaisim Ghassan F.12,Abed Azher M.3

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Kufa , Najaf , Iraq

2. Nanotechnology and Advanced Materials Research Unit (NAMRU), Faculty of Engineering, University of Kufa , Najaf , Iraq

3. Department of Air Conditioning and Refrigeration, Al-Mustaqbal University College , Babylon , Iraq

Abstract

Abstract Conjugate heat transfer is a complex problem because heat is transferred from a solid medium to a liquid medium through their interfaces. The steady-state laminar flow formed inside the microtubules is subjected to a constant temperature at the outer sidewall surface. These images cover a wide range of wall-to-fluid thermal conductivity ratios (ksf = 1, 2, 3, 4, and 5) and wall thickness-to-inner diameter ratios (δ/Ri = 0.25, 0.5, 0.75, 1, 1.25, and 1.5) and Reynolds numbers (Re = 200, 400, 600, 800, and 1,000). The results are processed by a Fluent program based on the finite volume method to numerically integrate the driver’s differential equations. The results show that increasing the wall-to-fluid thermal conductivity ratio ksf increases the inner wall dimensionless temperature and decreases the average Nusselt number. Conversely, an increase in the ratio of wall thickness to inner diameter results in a decrease in the dimensionless temperature of the inner wall and an increase in the average Nusselt number.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3