Affiliation:
1. Dipartimento di Matematica e Applicazioni “R. Caccioppoli” , Università degli studi di Napoli Federico II , Via Cintia, Monte S. Angelo, 80126 Napoli , Italy
2. Dipartimento di Matematica e Applicazioni “R. Caccioppoli” , Università degli studi di Napoli Federico II , Via Cintia, Monte S. Angelo, 80126; and Scuola Superiore Meridionale, Università degli studi di Napoli Federico II, Largo San Marcellino 10, 80138 Napoli , Italy
Abstract
Abstract
In this paper, we study the Γ-limit, as
p
→
1
{p\to 1}
, of the functional
J
p
(
u
)
=
∫
Ω
|
∇
u
|
p
+
β
∫
∂
Ω
|
u
|
p
∫
Ω
|
u
|
p
,
J_{p}(u)=\frac{\int_{\Omega}\lvert\nabla u\rvert^{p}+\beta\int_{\partial\Omega%
}\lvert u\rvert^{p}}{\int_{\Omega}\lvert u\rvert^{p}},
where Ω is a smooth bounded open set in
ℝ
N
{\mathbb{R}^{N}}
,
p
>
1
{p>1}
and β is a real number. Among our results, for
β
>
-
1
{\beta>-1}
, we derive an isoperimetric inequality for
Λ
(
Ω
,
β
)
=
inf
u
∈
BV
(
Ω
)
,
u
≢
0
|
D
u
|
(
Ω
)
+
min
(
β
,
1
)
∫
∂
Ω
|
u
|
∫
Ω
|
u
|
\Lambda(\Omega,\beta)=\inf_{u\in\operatorname{BV}(\Omega),\,u\not\equiv 0}%
\frac{\lvert Du\rvert(\Omega)+\min(\beta,1)\int_{\partial\Omega}\lvert u\rvert%
}{\int_{\Omega}\lvert u\rvert}
which is the limit as
p
→
1
+
{p\to 1^{+}}
of
λ
(
Ω
,
p
,
β
)
=
min
u
∈
W
1
,
p
(
Ω
)
J
p
(
u
)
{\lambda(\Omega,p,\beta)=\min_{u\in W^{1,p}(\Omega)}J_{p}(u)}
.
We show that among all bounded and smooth open sets with given volume, the ball maximizes
Λ
(
Ω
,
β
)
{\Lambda(\Omega,\beta)}
when
β
∈
(
-
1
,
0
)
{\beta\in(-1,0)}
and minimizes
Λ
(
Ω
,
β
)
{\Lambda(\Omega,\beta)}
when
β
∈
[
0
,
∞
)
{\beta\in[0,\infty)}
.
Subject
Applied Mathematics,Analysis
Reference22 articles.
1. L. Ambrosio, N. Fusco and D. Pallara,
Functions of Bounded Variation and Free Discontinuity Problems,
Oxford Math. Monogr.,
Oxford University, Oxford, 2000.
2. P. R. S. Antunes, P. Freitas and D. Krejčiřík,
Bounds and extremal domains for Robin eigenvalues with negative boundary parameter,
Adv. Calc. Var. 10 (2017), no. 4, 357–379.
3. G. Anzellotti and M. Giaquinta,
BV functions and traces,
Rend. Semin. Mat. Univ. Padova 60 (1978), 1–21.
4. M. Bareket,
On an isoperimetric inequality for the first eigenvalue of a boundary value problem,
SIAM J. Math. Anal. 8 (1977), no. 2, 280–287.
5. M.-H. Bossel,
Membranes élastiquement liées inhomogènes ou sur une surface: une nouvelle extension du théorème isopérimétrique de Rayleigh–Faber–Krahn,
Z. Angew. Math. Phys. 39 (1988), no. 5, 733–742.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献