Affiliation:
1. Dipartimento di Matematica , Università degli Studi di Salerno , Fisciano , Italy
Abstract
Abstract
We study the regularity of the interface for optimal energy configurations of functionals involving bulk energies with an additional perimeter penalization of the interface. Here we allow a more general structure for the energy functional in the bulk term. For a minimal configuration
(
E
,
u
)
{(E,u)}
, the Hölder continuity of u is well known. We give an estimate for the singular set of the boundary
∂
E
{\partial E}
. Namely we show that the Hausdorff dimension of the singular set is strictly smaller than
n
-
1
{n-1}
.
Subject
Applied Mathematics,Analysis
Reference24 articles.
1. H. W. Alt and L. A. Caffarelli,
Existence and regularity for a minimum problem with free boundary,
J. Reine Angew. Math. 325 (1981), 105–144.
2. L. Ambrosio and G. Buttazzo,
An optimal design problem with perimeter penalization,
Calc. Var. Partial Differential Equations 1 (1993), no. 1, 55–69.
3. L. Ambrosio, N. Fusco and D. Pallara,
Functions of Bounded Variation and Free Discontinuity Problems,
Oxford Math. Monogr.,
Oxford University, New York, 2000.
4. M. Carozza, I. Fonseca and A. Passarelli di Napoli,
Regularity results for an optimal design problem with a volume constraint,
ESAIM Control Optim. Calc. Var. 20 (2014), no. 2, 460–487.
5. M. Carozza, I. Fonseca and A. Passarelli di Napoli,
Regularity results for an optimal design problem with quasiconvex bulk energies,
Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 68.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献