Affiliation:
1. Department of Mathematics , University of Trento , Via Sommarive 14, 38123 Povo (Trento) , Italy
Abstract
Abstract
Given an open and bounded set
Ω
⊆
ℝ
n
{\Omega\subseteq\mathbb{R}^{n}}
and a family
𝐗
=
(
X
1
,
…
,
X
m
)
{\mathbf{X}=(X_{1},\ldots,X_{m})}
of Lipschitz vector fields on Ω, with
m
≤
n
{m\leq n}
, we characterize three classes of local functionals defined on first-order X-Sobolev spaces, which admit an integral representation in terms of X, i.e.
F
(
u
,
A
)
=
∫
A
f
(
x
,
u
(
x
)
,
X
u
(
x
)
)
𝑑
x
,
F(u,A)=\int_{A}f(x,u(x),Xu(x))\,dx,
with f being a Carathéodory integrand.
Subject
Applied Mathematics,Analysis
Reference23 articles.
1. E. Acerbi and N. Fusco,
Semicontinuity problems in the calculus of variations,
Arch. Ration. Mech. Anal. 86 (1984), no. 2, 125–145.
2. G. Alberti,
Integral representation of local functionals,
Ann. Mat. Pura Appl. (4) 165 (1993), 49–86.
3. M. Biroli, U. Mosco and N. A. Tchou,
Homogenization for degenerate operators with periodical coefficients with respect to the Heisenberg group,
C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 5, 439–444.
4. A. Bonfiglioli, E. Lanconelli and F. Uguzzoni,
Stratified Lie Groups and Potential Theory for Their sub-Laplacians,
Springer Monogr. Math.,
Springer, Berlin, 2007.
5. H. Brezis,
Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Universitext,
Springer, New York, 2011.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献