Double machine learning and automated confounder selection: A cautionary tale

Author:

Hünermund Paul1,Louw Beyers2,Caspi Itamar3

Affiliation:

1. Copenhagen Business School, Kilevej 14A , Frederiksberg , 2000 , Denmark

2. Maastricht University, Tongersestraat 53 , 6211 LM Maastricht , Netherlands

3. Bank of Israel , P.O. Box 780, 91007 , Jerusalem , Israel

Abstract

Abstract Double machine learning (DML) has become an increasingly popular tool for automated variable selection in high-dimensional settings. Even though the ability to deal with a large number of potential covariates can render selection-on-observables assumptions more plausible, there is at the same time a growing risk that endogenous variables are included, which would lead to the violation of conditional independence. This article demonstrates that DML is very sensitive to the inclusion of only a few “bad controls” in the covariate space. The resulting bias varies with the nature of the theoretical causal model, which raises concerns about the feasibility of selecting control variables in a data-driven way.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3