Global solutions to stochastic Volterra equations driven by Lévy noise

Author:

Hausenblas Erika,Kovács Mihály

Abstract

Abstract In this paper we investigate the existence and uniqueness of semilinear stochastic Volterra equations driven by multiplicative Lévy noise of pure jump type. In particular, we consider the equation $$\begin{array}{} \left\{ \begin{aligned} du(t) & = \left( A\int_0 ^t b(t-s) u(s)\,ds\right) \, dt + F(t,u(t))\,dt \\ & {} + \int_ZG(t,u(t), z) \tilde \eta(dz,dt) + \int_{Z_L}G_L(t,u(t), z) \eta_L(dz,dt),\, t\in (0,T],\\ u(0)&=u_0, \end{aligned} \right. \end{array} $$ where Z and ZL are Banach spaces, η̃ is a time-homogeneous compensated Poisson random measure on Z with intensity measure ν (capturing the small jumps), and ηL is a time-homogeneous Poisson random measure on ZL independent to η̃ with finite intensity measure νL (capturing the large jumps). Here, A is a selfadjoint operator on a Hilbert space H, b is a scalar memory function and F, G and GL are nonlinear mappings. We provide conditions on b, F G and GL under which a unique global solution exists. We also present an example from the theory of linear viscoelasticity where our result is applicable. The specific kernel b(t) = cρtρ−2, 1 < ρ < 2, corresponds to a fractional-in-time stochastic equation and the nonlinear maps F and G can include fractional powers of A.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3