Asymptotic behavior of mild solutions for nonlinear fractional difference equations

Author:

Xia Zhinan,Wang Dingjiang

Abstract

AbstractIn this paper, we establish some sufficient criteria for the existence, uniqueness of discrete weighted pseudo asymptotically periodic mild solutions and asymptotic behavior for nonlinear fractional difference equations in Banach space, where the nonlinear perturbation is Lipschitz type, or non-Lipschitz type. The results are a consequence of application of different fixed point theorems, namely, the Banach contraction mapping principle, Leray-Schauder alternative theorem and Matkowski’s fixed point technique.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference70 articles.

1. Dichotomy and almost automorphic solution of difference system;Electron. J. Qual. Theory Differ. Equ.,2013

2. Semilinear functional difference equations with infinite delay;Math. Comput. Modelling,2012

3. Asymptotic periodicity for flexible structural systems and applications;Acta. Appl. Math.,2016

4. Convergent solutions of linear functional difference equations in phase space;J. Math. Anal. Appl.,2003

5. Asymptotic periodicity for hyperbolic evolution equations and applications;Appl. Math. Comput.,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. (N,λ)-periodic solutions to abstract difference equations of convolution type;Journal of Mathematical Analysis and Applications;2024-12

2. Generalized ρ-Almost Periodic Sequences and Applications;Fractal and Fractional;2023-05-18

3. Time Discrete Abstract Fractional Volterra Equations via Resolvent Sequences;Mediterranean Journal of Mathematics;2022-08-30

4. Explicit Representation of Discrete Fractional Resolvent Families in Banach Spaces;Fractional Calculus and Applied Analysis;2021-11-22

5. Weighted pseudo asymptotically antiperiodic sequential solutions to semilinear difference equations;Journal of Difference Equations and Applications;2021-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3