Dichotomy of global capacity density in metric measure spaces

Author:

Aikawa Hiroaki1,Björn Anders2,Björn Jana2,Shanmugalingam Nageswari3

Affiliation:

1. Department of Mathematics, Hokkaido University, Sapporo060-0810, Japan

2. Department of Mathematics, Linköping University, SE-581 83Linköping, Sweden

3. Department of Mathematical Sciences, University of Cincinnati, P.O. Box 210025, Cincinnati,OH 45221-0025, USA

Abstract

AbstractThe variational capacity {\operatorname{cap}_{p}} in Euclidean spaces is known to enjoy the density dichotomy at large scales, namely that for every {E\subset{\mathbb{R}}^{n}},\inf_{x\in{\mathbb{R}}^{n}}\frac{\operatorname{cap}_{p}(E\cap B(x,r),B(x,2r))}% {\operatorname{cap}_{p}(B(x,r),B(x,2r))}is either zero or tends to 1 as {r\to\infty}. We prove that this property still holds in unbounded complete geodesic metric spaces equipped with a doubling measure supporting a p-Poincaré inequality, but that it can fail in nongeodesic metric spaces and also for the Sobolev capacity in {{\mathbb{R}}^{n}}. It turns out that the shape of balls impacts the validity of the density dichotomy. Even in more general metric spaces, we construct families of sets, such as John domains, for which the density dichotomy holds. Our arguments include an exact formula for the variational capacity of superlevel sets for capacitary potentials and a quantitative approximation from inside of the variational capacity.

Funder

Japan Society for the Promotion of Science

Vetenskapsrådet

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference32 articles.

1. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces;Rev. Mat. Iberoam.,2000

2. Fine continuity on metric spaces;Manuscripta Math.,2008

3. Dichotomy of global density of Riesz capacity;Studia Math.,2016

4. Poincaré inequalities, uniform domains and extension properties for Newton–Sobolev functions in metric spaces;J. Math. Anal. Appl.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3