Affiliation:
1. Dipartimento di Matematica, “Sapienza” Università di Roma,Rome, Italy
Abstract
AbstractWe prove some existence results for the following Schrödinger–Maxwell system of elliptic equations:\left\{\begin{aligned} &\displaystyle{-}\div(M(x)\nabla u)+A\varphi|u|^{r-2}u=%
f,&&\displaystyle u\in W_{0}^{1,2}(\Omega),\\
&\displaystyle{-}\div(M(x)\nabla\varphi)=|u|^{r},&&\displaystyle\varphi\in W_{%
0}^{1,2}(\Omega).\end{aligned}\right.In particular, we prove the existence of a finite energy solution {(u,\varphi)} if {r>2^{*}} and f does not belong to the “dual space” {L^{\frac{2N}{N+2}}(\Omega)}.
Subject
Applied Mathematics,Analysis
Reference16 articles.
1. Renormalized solutions of elliptic equations with general measure data;Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),1999
2. Nonlinear elliptic and parabolic equations involving measure data;J. Funct. Anal.,1989
3. Renormalized solutions of elliptic equations with general measure data;Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),1999
4. Nonlinear elliptic equations with right-hand side measures;Comm. Partial Differential Equations,1992
5. An eigenvalue problem for the Schrödinger–Maxwell equations;Topol. Methods Nonlinear Anal.,1998
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献