Quasi-static hydraulic crack growth driven by Darcy’s law

Author:

Almi Stefano1

Affiliation:

1. Department of Mathematics, TU München, Boltzmannstraße 3, 85748Garching bei München, Germany

Abstract

AbstractIn the framework of rate independent processes, we present a variational model of quasi-static crack growth in hydraulic fracture. We first introduce the energy functional and study the equilibrium conditions of an unbounded linearly elastic body subject to a remote strain {\epsilon\in\mathbb{R}} and with a sufficiently regular crack Γ filled by a volume V of incompressible fluid. In particular, we are able to find the pressure p of the fluid inside the crack as a function of Γ, V, and ϵ. Then we study the problem of quasi-static evolution for our model, imposing that the fluid volume V and the fluid pressure p are related by Darcy’s law. We show the existence of such an evolution, and we prove that it satisfies a weak notion of the so-called Griffith’s criterion.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference42 articles.

1. Energy release rate for cracks in finite-strain elasticity;Math. Methods Appl. Sci.,2008

2. Evolution of rate-independent systems;Evolutionary Equations. Vol. II,2005

3. Revisiting brittle fracture as an energy minimization problem;J. Mech. Phys. Solids,1998

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On hyperelastic solid with thin rigid inclusion and crack subjected to global injectivity condition;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07-15

2. Theoretical and numerical study on the contribution of multi-hole arrangement to coalbed methane extraction;Energy;2023-12

3. Shape derivatives of energy and regularity of minimizers for shallow elastic shells with cohesive cracks;Nonlinear Analysis: Real World Applications;2022-06

4. A Γ-convergence result for fluid-filled fracture propagation;ESAIM: Mathematical Modelling and Numerical Analysis;2020-04-28

5. Crack growth by vanishing viscosity in planar elasticity;Mathematics in Engineering;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3