Analysis of a New Model of Economic Growth in Renewable Energy for Green Computing

Author:

Long Yunan1,Chen Man1

Affiliation:

1. School of Economics, Xihua University , Chengdu , 610039, Sichuan , China

Abstract

Abstract Energy consumption, which works as the physical engine of economic development, significantly influences the environment; using renewable energy, which originates from naturally filled resources, helps mitigate these adverse effects. The high price of fossil fuels, carbon dioxide emissions, and electricity generation are the most difficult aspects of this kind of renewable energy, which is often regarded as one of the main factors holding back economic progress. An artificial neural network-enabled economic growth model (ANN-EGM) has been constructed in this research to predict the restraining and pushing energy variables that impede economic growth. ANN-EGM optimizes the limiting and driving energy forces, which helps to improve the use of renewable energy and assist the economy’s growth. The prominent enhancement in driving economic activity and employment rates may result in cost-effective improvement for the effective production of energy from renewable resources for green computing. The proposed article constructs an ANN-EGM and examines its topological structure and the effect of training errors the network allows on its performance to address issues in green computing technology and sustainable social and economic development. Conventional approaches based on liming and driving energy forces are predicted to be less successful than an ANN-EGM in predicting the increase of the renewable energy industry for green computing and its correlation with quicker economic growth. The study’s findings suggest that the ANN-EGM can accurately forecast and verify the limiting and driving factors in renewable energy generation. The experimental outcome demonstrates that the proposed ANN-EGM model increases the prediction ratio by 85.6% and the performance ratio by 86.4% and has a reduced mean square error rate of 10.1% compared to other existing methods.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3