A survey of Polish ASR speech datasets

Author:

Junczyk Michał1ORCID

Affiliation:

1. Adam Mickiewicz University , Poznań , Poland

Abstract

Abstract Access to speech datasets is essential for the effective use of modern ASR systems in low-resource languages like Polish. However, the lack of centralized information and metadata describing available datasets poses a significant challenge to researchers and practitioners. In this paper, we address this issue by presenting the most comprehensive survey of Polish ASR speech datasets to date. We manually curated information on 53 publicly available datasets and annotated them with 61 attributes, providing a comprehensive catalog of these resources. The catalog facilitates the discovery and evaluation of available datasets, enabling researchers to identify datasets that suit their specific needs. It also enables the identification of gaps in the existing datasets, which may inform future research directions. The catalog is open and community-driven, which means that new data sets can be added and issues can be reported, ensuring its continued relevance and usefulness to the ASR community. Our work contributes to improving the accessibility and usability of ASR systems in low-resource languages such as Polish.

Publisher

Walter de Gruyter GmbH

Reference32 articles.

1. Aksënova, Alëna, Zhehuai Chen, Chung-Cheng Chiu, Daan van Esch, Pavel Golik, Wei Han, Bhuvana Ramabhadran, Levi King, Andrew Rosenberg, Susan Schwartz & Gary Wang. 2022. Accented speech recognition: Benchmarking, pre-training, and diverse data. arXiv preprint arXiv:2205.08014.

2. Aksënova, Alëna, Daan van Esch, James Flynn & Pavel Golik. 2021. How might we create better benchmarks for speech recognition? In Proceedings of the 1st workshop on benchmarking: Past, present and future, 22–34.

3. Ardila, Rosana, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty, Reuben Morais, Lindsay Saunders, Francis Tyers & Gregor Weber. 2019. Common voice: A massively-multilingual speech corpus. Proceedings of the twelfth language resources and evaluation conference, 4218–4222. European Language Resources Association.

4. Augustyniak, Łukasz, Kamil Tagowski, Albert Sawczyn, Denis Janiak, Roman Bartusiak, Adrian Szymczak, Marcin Wątroba, Arkadiusz Janz, Piotr Szymański, Mikołaj Morzy, Tomasz Kajdanowicz & Maciej Piasecki. 2022. This is the way: Designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish. Arxiv:2211.13112.

5. Bender, Emily M. & Batya Friedman. 2018. Data statements for natural language processing: Toward mitigating system bias and enabling better science. Transactions of the Association for Computational Linguistics 6. 587–604. https://doi.org/10.1162/tacl_a_00041.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3