Extended perfusion protocol for MS lesion quantification

Author:

Kontopodis Eleftherios12,Marias Kostas3,Manikis Georgios C.12,Nikiforaki Katerina12,Venianaki Maria4,Maris Thomas G.12,Mastorodemos Vasileios5,Papadakis Georgios Z.12,Papadaki Efrosini12

Affiliation:

1. Foundation for Research and Technology – Hellas, Institute of Computer Science, Computational Bio-Medicine Laboratory, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece

2. Department of Radiology, Medical School, University of Crete, P. O. Box 2208, Heraklion, Crete, Greece

3. Technological Educational Institute of Crete, Department of Informatics Engineering, Heraklion, Crete, Estavromenos, TK 71410, Greece

4. Science and Technology Park of Crete, Gnosis Data Analysis, N. Plastira 100, Vassilika Vouton, GR-700 13, Heraklion, Greece

5. Department of Neurology, Medical School, University of Crete, P. O. Box 2208, Heraklion, Crete, Greece

Abstract

AbstractThis study aims to examine a time-extended dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) protocol and report a comparative study with three different pharmacokinetic (PK) models, for accurate determination of subtle blood–brain barrier (BBB) disruption in patients with multiple sclerosis (MS). This time-extended DCE-MRI perfusion protocol, called Snaps, was applied on 24 active demyelinating lesions of 12 MS patients. Statistical analysis was performed for both protocols through three different PK models. The Snaps protocol achieved triple the window time of perfusion observation by extending the magnetic resonance acquisition time by less than 2 min on average for all patients. In addition, the statistical analysis in terms of adj-R2 goodness of fit demonstrated that the Snaps protocol outperformed the conventional DCE-MRI protocol by detecting 49% more pixels on average. The exclusive pixels identified from the Snaps protocol lie in the low ktrans range, potentially reflecting areas with subtle BBB disruption. Finally, the extended Tofts model was found to have the highest fitting accuracy for both analyzed protocols. The previously proposed time-extended DCE protocol, called Snaps, provides additional temporal perfusion information at the expense of a minimal extension of the conventional DCE acquisition time.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3