Affiliation:
1. Institut für Theoretische Physik, Universität Tübingen
Abstract
In preceding papers the nonlinear spinor field with Heisenberg's dipole regularization was interpreted as a lepton-quark system. In this paper it is demonstrated that this model is able to produce electro-weak as well as strong interactions. For the analytical derivation of these interactions, in Section 1 an improved calculation technique for scattering functionals is developed which corresponds to an interaction representation of relativistic quantum fields with inclusion of bound states, and which is suited for a comparison of its results with conventional field theories, in particular gauge theories. In Section 2 the projection technique from the spinor field into the lepton-quark representation is discussed in detail. The principle which allows the derivation of the various interactions consists in the calculation and incorporation of universal (local) bosons and non-universal (non-local) bosons occuring as bound states of the spinor field, resp., leptonquark fields, into the scattering functional equation. This is performed for local bosons in Section 1 and for non-local bosons in Section 3. In Section 4 it is shown that a subsequent unitarization which corresponds to quark confinement leads to selection rules for lepton-baryon processes which qualitatively correspond to those of grand unification gauge theories. Numerical calculations will be given in subsequent papers
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献