On the Derivation of Strong and Electro-weak Interactions in Functional Quantum Theory of the Nonlinear Spinor Field as a Lepton-hadron Model with Quark-confinement

Author:

Stumpf H.1

Affiliation:

1. Institut für Theoretische Physik, Universität Tübingen

Abstract

In preceding papers the nonlinear spinor field with Heisenberg's dipole regularization was interpreted as a lepton-quark system. In this paper it is demonstrated that this model is able to produce electro-weak as well as strong interactions. For the analytical derivation of these interactions, in Section 1 an improved calculation technique for scattering functionals is developed which corresponds to an interaction representation of relativistic quantum fields with inclusion of bound states, and which is suited for a comparison of its results with conventional field theories, in particular gauge theories. In Section 2 the projection technique from the spinor field into the lepton-quark representation is discussed in detail. The principle which allows the derivation of the various interactions consists in the calculation and incorporation of universal (local) bosons and non-universal (non-local) bosons occuring as bound states of the spinor field, resp., leptonquark fields, into the scattering functional equation. This is performed for local bosons in Section 1 and for non-local bosons in Section 3. In Section 4 it is shown that a subsequent unitarization which corresponds to quark confinement leads to selection rules for lepton-baryon processes which qualitatively correspond to those of grand unification gauge theories. Numerical calculations will be given in subsequent papers

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3