Extraction of ursolic acid from Ocimum sanctum and synthesis of its novel derivatives: effects on extracellular homocysteine, dihydrofolate reductase activity and proliferation of HepG2 human hepatoma cells

Author:

Batra Apsara1,Sastry V. Girija2

Affiliation:

1. Pharmaceutical Chemistry Division, NCRD’S Sterling Institute of Pharmacy, Sector 19, Nerul (E), Nerul, Navi-Mumbai 400706, Maharashtra, India

2. Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India

Abstract

Abstract The objective of the present study was to extract ursolic acid (UA) from Ocimum sanctum, to synthesize its bioactive derivatives, evaluate the anti-cancer effect of its derivatives and to establish the possible mechanism of action. In the present report, we extracted UA from whole plant of O. sanctum, synthesized its novel derivatives and investigated their effect on homocysteine metabolism and dihydrofolate reductase (DHFR) activity of HepG2 cells. UA and its derivatives UA-1, UA-2 and UA-3 down-regulated DHFR activity and increased extracellular homocysteine. UA-2 showed significant anti-proliferation activity in cancer cells. Cancer cells have increased the requirement of pyrimidine base thymidylate due to rapid cell division. Thymidylate biosynthesis depends on sufficient pools of folate dependent enzymes like DHFR. In the present study, we examined the UA and its derivatives mediated perturbation of DHFR activity and extracellular homocysteine in HepG2 human hepatoma cells. After incubation with UA-2, a potent inhibition of DHFR activity was observed. Our results showed that derivatization of UA might adversely affect DHFR activity. Measurement of extracellular homocysteine indicated impaired one-carbon metabolism in cells treated with UA derivatives. In conclusion, our data suggest an anti-cancer role of UA and its derivatives via inhibition of one-carbon metabolism.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Medicine,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3