Speaker Identification Using Data-Driven Score Classification

Author:

Gan Hock1,Mporas Iosif1,Safavi Saeid1,Sotudeh Reza1

Affiliation:

1. School of Engineering and Technology University of Hertfordshire

Abstract

Abstract We present a comparative evaluation of different classification algorithms for a fusion engine that is used in a speaker identity selection task. The fusion engine combines the scores from a number of classifiers, which uses the GMM-UBM approach to match speaker identity. The performances of the evaluated classification algorithms were examined in both the text-dependent and text-independent operation modes. The experimental results indicated a significant improvement in terms of speaker identification accuracy, which was approximately 7% and 14.5% for the text-dependent and the text-independent scenarios, respectively. We suggest the use of fusion with a discriminative algorithm such as a Support Vector Machine in a real-world speaker identification application where the text-independent scenario predominates based on the findings.

Publisher

Walter de Gruyter GmbH

Reference37 articles.

1. [1] Altman, N.S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175–185

2. [2] Beigi, H. (2011). Speaker Recognition, Encyclopedia of Cryptography and Security, Springer, pp. 1232–1242

3. [3] Bimbot, F., Bonastre, J.F., Fredouille, C., Gravier, G., Magrin-Chagnolleau, I., Meignier, S., Reynolds, D.A. (2004). A tutorial on text-independent speaker verification. EURASIP journal on applied signal processing, 2004, 430–451

4. [4] Bishop, C.M. (2008, June). A new framework for machine learning. In IEEE World Congress on Computational Intelligence (pp. 1–24). Springer Berlin Heidelberg

5. [5] Bouchard, G. (2007). Bias-variance tradeoff in hybrid generative-discriminative models. In Machine Learning and Applications. ICMLA 2007. Sixth International Conference on (pp. 124–129). IEEE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3