Real-time measurement system for determining metal concentrations in water-intensive processes

Author:

Nikolskaya Ekaterina1,Liukkonen Mika2,Hiltunen Yrjö1

Affiliation:

1. FiberLaboratory, South Eastern Finland University of Applied Sciences, Savonlinna, 57200, Finland

2. University of Eastern Finland, Kuopio, 70210, Finland

Abstract

AbstractThe main purpose of this paper is to demonstrate the potential of time-domain nuclear magnetic resonance (TD-NMR) technology for monitoring the concentrations of metal ions in water-based solutions. The main focus of this work was paramagnetic ions, such as Mn2+, Cu2+, Fe3+, Fe2+, Zn2+ and Ni2+, which are often the principal metal components in mining waters. Laboratory samples of different concentrations of single metals and mixtures of them and samples of real mining water were used in the relaxation rate (R2) measurements. The measurements of single metal ions were used for the determination of the relaxivities of those ions. The concentrations of the ions in the mining water as a function of pH were also estimated by means of the X-ray fluorescence (XRF) method and ChemEQL software for calculating chemical speciation equilibria. Using these concentration values and the relaxivities of the metal ions, the total relaxation rate (R2) results were then calculated. Principally, the results of these three different determinations are in relatively good agreement. It can be concluded that TD-NMR has great potential for monitoring metal ion concentrations during water treatment.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3