Properties of Laser Additive Deposited Metallic Powder of Inconel 625

Author:

Danielewski Hubert1,Antoszewski Bogdan1

Affiliation:

1. Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314Kielce, Poland

Abstract

AbstractPaper presents results of laser additive manufacturing. Deposition of nickel based super alloy Inconel 625 was performed. Laser metal deposition is advanced manufacturing process dedicated for prototyping and low scale series production. Inconel 625 is nickel based super alloy, with high heat resistance properties. Therefore due material properties and chemical composition is characterized as a difficult to machining [1, 2]. Additive manufacturing process using focused photons beam for selective deposition of metallic powder in laser engineered net shaping (LENS) method can be used as alternative technology. High energy density of controllable laser beam combining with coaxial delivery system allow to precise deposited metallic powder. Manufacturing process are based on selective melting of additional material using laser radiation and crystallization process. An additional material in form of filler wire as well as metallic powder can be used. Advantages of using metallic powder are higher level of process control, nevertheless adequate selection of process parameters are required. High energy density of laser beam and rapid crystallization process affect on metallographic structure of deposited material. Thermal energy absorbed in material affect on phase transformation.Molten powder mixing with base material changing metallographic structure. Chemical composition of obtained overlay weld are combination of base and additive material. Therefore to achieve stable crystallization process chemical composition of additive material wassimilar to base material. Additional alloying elements could affect on mechanical properties. Deposition process using TruLaserCell 1005 laser machine was performed. To determine properties of manufactured material metallographic analysis and destructive tests were performed.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

Reference46 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3