Weight Smoothing for Generalized Linear Models Using a Laplace Prior

Author:

Xia Xi1,Elliott Michael R.

Affiliation:

1. Dept. of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.

Abstract

Abstract When analyzing data sampled with unequal inclusion probabilities, correlations between the probability of selection and the sampled data can induce bias if the inclusion probabilities are ignored in the analysis. Weights equal to the inverse of the probability of inclusion are commonly used to correct possible bias. When weights are uncorrelated with the descriptive or model estimators of interest, highly disproportional sample designs resulting in large weights can introduce unnecessary variability, leading to an overall larger mean square error compared to unweighted methods. We describe an approach we term ‘weight smoothing’ that models the interactions between the weights and the estimators as random effects, reducing the root mean square error (RMSE) by shrinking interactions toward zero when such shrinkage is allowed by the data. This article adapts a flexible Laplace prior distribution for the hierarchical Bayesian model to gain a more robust bias-variance tradeoff than previous approaches using normal priors. Simulation and application suggest that under a linear model setting, weight-smoothing models with Laplace priors yield robust results when weighting is necessary, and provide considerable reduction in RMSE otherwise. In logistic regression models, estimates using weight-smoothing models with Laplace priors are robust, but with less gain in efficiency than in linear regression settings.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of the nonsampled units in survey design with the finite population using Bayesian nonparametric mixture model;Communications in Statistics - Simulation and Computation;2020-04-09

2. Multiple Imputation with Survey Weights: A Multilevel Approach;Journal of Survey Statistics and Methodology;2019-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3