The Use of Official Statistics in Self-Selection Bias Modeling

Author:

Dalla Valle Luciana1

Affiliation:

1. School of Computing, Electronics and Mathematics, Plymouth University, Drake Circus, PL4 8AA Plymouth, Devon, United Kingdom of Great Britain and Northern Ireland

Abstract

Abstract Official statistics are a fundamental source of publicly available information that periodically provides a great amount of data on all major areas of citizens’ lives, such as economics, social development, education, and the environment. However, these extraordinary sources of information are often neglected, especially by business and industrial statisticians. In particular, data collected from small businesses, like small and medium-sized enterprizes (SMEs), are rarely integrated with official statistics data. In official statistics data integration, the quality of data is essential to guarantee reliable results. Considering the analysis of surveys on SMEs, one of the most common issues related to data quality is the high proportion of nonresponses that leads to self-selection bias. This work illustrates a flexible methodology to deal with self-selection bias, based on the generalization of Heckman’s two-step method with the introduction of copulas. This approach allows us to assume different distributions for the marginals and to express various dependence structures. The methodology is illustrated through a real data application, where the parameters are estimated according to the Bayesian approach and official statistics data are incorporated into the model via informative priors.

Publisher

Walter de Gruyter GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A copula-based portrayal of the collider bias;Statistical Methods & Applications;2023-11-20

2. Estimation of the size of informal employment based on administrative records with non‐ignorable selection mechanism;Journal of the Royal Statistical Society: Series C (Applied Statistics);2021-03-25

3. Social media big data integration: A new approach based on calibration;Expert Systems with Applications;2018-11

4. Data Integration;Wiley StatsRef: Statistics Reference Online;2017-11-15

5. Copula and Vine Modeling for Finance;Wiley StatsRef: Statistics Reference Online;2017-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3