Using Data Mining to Predict the Occurrence of Respondent Retrieval Strategies in Calendar Interviewing: The Quality of Retrospective Reports

Author:

Belli Robert F.1,Miller L. Dee2,Baghal Tarek Al3,Soh Leen-Kiat4

Affiliation:

1. University of Nebraska, Department of Psychology, Lincoln, NE 68588-0308, United States of America

2. University of Nebraska, 2343 Stone Creek Loop South, Lincoln, NE 68512, United States of America

3. University of Essex, ISER, Colchester, UK CO4 3SQ.

4. University of Nebraska, 122E Avery Hall, Lincoln, NE 68588-0115, United States of America

Abstract

Abstract Determining which verbal behaviors of interviewers and respondents are dependent on one another is a complex problem that can be facilitated via data-mining approaches. Data are derived from the interviews of 153 respondents of the Panel Study of Income Dynamics (PSID) who were interviewed about their life-course histories. Behavioral sequences of interviewer-respondent interactions that were most predictive of respondents spontaneously using parallel, timing, duration, and sequential retrieval strategies in their generation of answers were examined. We also examined which behavioral sequences were predictive of retrospective reporting data quality as shown by correspondence between calendar responses with responses collected in prior waves of the PSID. The verbal behaviors of immediately preceding interviewer and respondent turns of speech were assessed in terms of their co-occurrence with each respondent retrieval strategy. Interviewers’ use of parallel probes is associated with poorer data quality, whereas interviewers’ use of timing and duration probes, especially in tandem, is associated with better data quality. Respondents’ use of timing and duration strategies is also associated with better data quality and both strategies are facilitated by interviewer timing probes. Data mining alongside regression techniques is valuable to examine which interviewer-respondent interactions will benefit data quality.

Publisher

Walter de Gruyter GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3