Finite-dimensional perturbation of the Dirichlet boundary value problem for the biharmonic equation

Author:

Berikkhanova Gulnaz1

Affiliation:

1. Department of Physical-Mathematical Sciences and Informatics , Shakarim University , Semey , Republic of Kazakhstan

Abstract

Abstract The biharmonic equation is one of the important equations of mathematical physics, describing the behaviour of harmonic functions in higher-dimensional spaces. The main purpose of this study was to construct a finite-dimensional perturbation for the Dirichlet boundary value problem associated with the biharmonic equation. The methodological basis for this study was an integrated approach that includes mathematical analysis, algebraic methods, operator theory, and the theorem on the existence and uniqueness of a solution for a boundary value. The main tool is a finite-dimensional perturbation, which allows for examining the properties and behaviour of boundary value problems in as much detail as possible. In the study, descriptions of correctly solvable internal boundary value problems for a biharmonic equation in non-simply connected domains were considered in detail. The study is also devoted to the search for solutions and the analytical representation of resolvents of boundary value problems for a biharmonic equation in multi-connected domains. Within the framework of the study, theorems and their consequences were proved, and a finite-dimensional perturbation was constructed for the Dirichlet boundary value problem. Analytical representations of resolvents of boundary value problems for a biharmonic equation in multi-connected domains were also obtained. The examination of a finite-dimensional perturbation of the Dirichlet boundary value problem for a biharmonic equation has expanded the understanding of the properties of this equation in various contexts.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3