Optimized AVHRR land surface temperature downscaling method for local scale observations: case study for the coastal area of the Gulf of Gdańsk

Author:

Chybicki Andrzej,Łubniewski Zbigniew

Abstract

AbstractSatellite imaging systems have known limitations regarding their spatial and temporal resolution. The approaches based on subpixel mapping of the Earth’s environment, which rely on combining the data retrieved from sensors of higher temporal and lower spatial resolution with the data characterized by lower temporal but higher spatial resolution, are of considerable interest. The paper presents the downscaling process of the land surface temperature (LST) derived from low resolution imagery acquired by the Advanced Very High Resolution Radiometer (AVHRR), using the inverse technique. The effective emissivity derived from another data source is used as a quantity describing thermal properties of the terrain in higher resolution, and allows the downsampling of low spatial resolution LST images. The authors propose an optimized downscaling method formulated as the inverse problem and show that the proposed approach yields better results than the use of other downsampling methods. The proposed method aims to find estimation of high spatial resolution LST data by minimizing the global error of the downscaling. In particular, for the investigated region of the Gulf of Gdansk, the RMSE between the AVHRR image downscaled by the proposed method and the Landsat 8 LST reference image was 2.255°C with correlation coefficient R equal to 0.828 and Bias = 0.557°C. For comparison, using the PBIM method, it was obtained RMSE = 2.832°C, R = 0.775 and Bias = 0.997°C for the same satellite scene. It also has been shown that the obtained results are also good in local scale and can be used for areas much smaller than the entire satellite imagery scene, depicting diverse biophysical conditions. Specifically, for the analyzed set of small sub-datasets of the whole scene, the obtained RSME between the downscaled and reference image was smaller, by approx. 0.53°C on average, in the case of applying the proposed method than in the case of using the PBIM method.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Reference114 articles.

1. Relations between evaporation coefficients and vegetation indices studied by model simulations;Remote Sensing of Environment,1994

2. Yanfei Zhong, Adaptive Subpixel Mapping Based on a Multiagent System for Remote-Sensing Imagery;IEEE Transactions on Geoscience and Remote Sensing,2014

3. Mapping sub-pixel proportional land cover with AVHRR imagery;International Journal of Remote Sensing,1997

4. Estimation of surface evaporation map over southern Great Plains using remote sensing data;Water Resources Research,2001

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3