The cellular level mode I fracture behaviour of spruce and birch in the RT crack propagation system

Author:

Tukiainen Pekka,Hughes Mark

Abstract

Abstract The effect of the microscopic structure and the moisture content (MC) of wood on its fracture behaviour has been investigated. Green and air-dried spruce (Picea abies [L.] Karst.) and birch (Betula pendula Roth.) wood were subjected to pure mode I loading in the radial- tangential (RT) crack propagation system. Tests were carried out in situ in an environmental scanning electron microscope to observe crack propagation at the cellular level. Crack-tip displacement fields were computed by digital image correlation, and crack propagation was observed from the images captured during testing. Both the MC and the microscopic structure were found to affect the fracture process. In the air-dried birch and spruce, only microcracking caused large displacements ahead of the crack-tip. In spruce, the microcracking zone was larger than in birch. In green birch and spruce, microcracking was less evident than in the air-dried specimens, and in some cases, there were notable deformations in a few cells ahead of the crack-tip before crack extension. Microcracking is considered to be the main toughening mechanism in spruce and birch in the RT crack propagation system.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3