Numerical analysis of temperature profiles during thermal modification of wood: chemical reactions and experimental verification

Author:

Trcala Miroslav,Čermák Petr

Abstract

Abstract Numerical analysis of temperature profiles during thermal modification of wood was carried out. The numerical solution – based on finite element analysis, FEA – of the 3D problem of transient nonlinear heat transfer model is presented for wood as a typical anisotropic material. The numerical model was enhanced for describing chemical reactions of cellulose, hemicelluloses and lignin (pyrolysis model), which takes into account the exothermic reactions as an internal source of heat energy. Experimental as well as theoretical process schedules were applied and the influence of sample dimensions (sample geometry) and wood species was studied. The influence of wood species was negligible on heating time to reach the highest temperature, i.e., the temperature differences were about 2°C during the drying phase. A expected, the sample size played an important role in the heating duration and in terms of the exothermic reactions of wood. The experimental and numerical data are generally in good agreement. The numerical error increased in the range of higher temperatures. The results can be improved by consideration of wood species (mass of wood compounds) and boundary conditions in the pyrolysis model, thus, better insight into details of thermal modification of wood could be reached.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference76 articles.

1. Heat distribution in thermally modified timber;Čermák;Eur Prod,2013

2. Effect of initial moisture content on the anti - swelling efficiency of thermally modified Scots pine sapwood treated in a high - pressure reactor under saturated steam;Rautkari;Holzforschung,2014

3. Chemical analysis of heat treated softwoods Roh Werkstoff;Boonstra,2006

4. Heat treatment of wood : European processes and their background In Proceedings of conference on Enhancing the durability of lumber and engineered wood products;Militz,2002

5. Thermal behaviour of Norway spruce and European beech in and between the principal anatomical directions;Sonderegger;Holzforschung,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3