On linear codes with random multiplier vectors and the maximum trace dimension property

Author:

Erdélyi Márton1,Hegedüs Pál1,Kiss Sándor Z.1,Nagy Gábor P.12

Affiliation:

1. Department of Algebra and Geometry, Budapest University of Technology and Economics, Műegyetem rkp. 3 , H-1111 Budapest , Hungary

2. Bolyai Institute, University of Szeged, Aradi vértanúk tere 1 , H-6720 Szeged , Hungary

Abstract

Abstract Let C C be a linear code of length n n and dimension k k over the finite field F q m {{\mathbb{F}}}_{{q}^{m}} . The trace code Tr ( C ) {\rm{Tr}}\left(C) is a linear code of the same length n n over the subfield F q {{\mathbb{F}}}_{q} . The obvious upper bound for the dimension of the trace code over F q {{\mathbb{F}}}_{q} is m k mk . If equality holds, then we say that C C has maximum trace dimension. The problem of finding the true dimension of trace codes and their duals is relevant for the size of the public key of various code-based cryptographic protocols. Let C a {C}_{{\boldsymbol{a}}} denote the code obtained from C C and a multiplier vector a ( F q m ) n {\boldsymbol{a}}\in {\left({{\mathbb{F}}}_{{q}^{m}})}^{n} . In this study, we give a lower bound for the probability that a random multiplier vector produces a code C a {C}_{{\boldsymbol{a}}} of maximum trace dimension. We give an interpretation of the bound for the class of algebraic geometry codes in terms of the degree of the defining divisor. The bound explains the experimental fact that random alternant codes have minimal dimension. Our bound holds whenever n m ( k + h ) n\ge m\left(k+h) , where h 0 h\ge 0 is the Singleton defect of C C . For the extremal case n = m ( h + k ) n=m\left(h+k) , numerical experiments reveal a closed connection between the probability of having maximum trace dimension and the probability that a random matrix has full rank.

Publisher

Walter de Gruyter GmbH

Reference22 articles.

1. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505–10. https://doi.org/10.1038/s41586-019-1666-5.

2. Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput. 1997;26(5):1484–509. https://doi.org/10.1137/S0097539795293172.

3. McEliece RJ. A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, 42–44:114–116, 1978.

4. National Institute of Standards, Technology. Post-Quantum Cryptography; Updated: March 25. 2020. http://csrc.nist.gov/projects/post-quantum-cryptography.

5. Høholdt T, Van Lint JH, Pellikaan R. Algebraic geometry codes. Handbook of coding theory. 1998;1(Part 1):871–961.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3