Multiscale asymptotics for the Skeleton of the Madden-Julian Oscillation and Tropical–Extratropical Interactions

Author:

Chen Shengqian,Majda Andrew J.,Stechmann Samuel N.

Abstract

AbstractAnew model is derived and analyzed for tropical–extratropical interactions involving the Madden– Julian oscillation (MJO). The model combines (i) the tropical dynamics of the MJO and equatorial baroclinic waves and (ii) the dynamics of barotropic Rossby waves with significant extratropical structure, and the combined system has a conserved energy. The method of multiscale asymptotics is applied to systematically derive a system of ordinary differential equations (ODEs) for three-wave resonant interactions. Two novel features are (i) a degenerate auxiliary problem with overdetermined equations due to a compatibility condition (meridional geostrophic balance) and (ii) cubic self-interaction terms that are not typically found in threewave resonance ODEs. Several examples illustrate applications to MJO initiation and termination, including cases of (i) the MJO, equatorial baroclinic Rossbywaves, and barotropic Rossbywaves interacting, and (ii) the MJO, baroclinic Kelvinwaves, and barotropic Rossbywaves interacting. Resonance with the Kelvinwave is not possible here if only dry variables are considered, but it occurs in the moist model here through interactions with water vapor and convective activity.

Publisher

Portico

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Model Communication and Data Assimilation for Mitigating Model Error and Improving Forecasts;Chinese Annals of Mathematics, Series B;2019-09

2. Tropical–Extratropical Interactions and the MJO Skeleton Model;Tropical Intraseasonal Variability and the Stochastic Skeleton Method;2019

3. A Simple Model of Convectively Coupled Equatorial Rossby Waves;Journal of Advances in Modeling Earth Systems;2019-01

4. Boreal summer intraseasonal oscillations in the MJO skeleton model with observation-based forcing;Dynamics of Atmospheres and Oceans;2017-06

5. Tropical–Extratropical Interactions with the MJO Skeleton and Climatological Mean Flow;Journal of the Atmospheric Sciences;2016-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3