Author:
Wijnands J.S.,Qian G.,Shelton K.L.,Fawcett R.J.B.,Chan J.C.L.,Kuleshov Y.
Abstract
AbstractThe Australian Bureau of Meteorology (Bureau) issues operational tropical cyclone (TC) seasonal forecasts for the Australian region (AR) and the South Pacific Ocean (SPO) and subregions therein. The forecasts are issued in October, ahead of the Southern Hemisphere TC season (November to April). Improvement of operational TC seasonal forecasts can lead to more accurate warnings for coastal communities to prepare for TC hazards. This study investigates the use of support vector regression (SVR) models, exploring new explanatory variables and non-linear relationships between them, the use of model averaging, and lastly the integration of forecast intervals based on a bias-corrected and accelerated non-parametric bootstrap. Hindcasting analyses show that the SVR model outperforms several benchmark methods. Analysis of the generated models shows that the Dipole Mode Index, 5VAR index and the Southern Oscillation Index are the most frequently selected as explanatory variables for TC seasonal forecasting in all regions. The usage of ENSOrelated covariates implies that definitions of regions and subregions may have to be updated to achieve optimal forecasting performance. Overall, the new SVR methodology is an improvement over the current linear discriminant analysis models and has the potential to increase accuracy of TC seasonal forecasts in the AR and SPO.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献