Comparison of the Action of Bleaching Herbicides

Author:

Feierabend Jürgen1

Affiliation:

1. Botanisches Institut, J. W. Goethe-Universität, Postfach 11 19 32, D -6000 Frankfurt am Main, Bundesrepublik Deutschland

Abstract

Among chlorosis-inducing herbicides that interfere with carotenoid synthesis two groups of different potency can be discriminated (group 1: aminotriazole amd haloxidine; group 2 with more extensive photodestructions: pyridazinone herbicides and difunon). After application of herbicides of group 2 colored carotenoids were completely absent and preexisting chlorophyll was degraded by photochemical reactions requiring high light intensity and O2, that occurred also at 0°C. In treatments with group 1 herbicides direct photodegradation of chlorophyll was not sufficient to generate the chlorosis. Light-induced interference with constituents of the chloroplast protein synthesis apparatus being more sensitive to photooxidative damage than chlorophyll, appeared to indirectly mediate the chlorosis. In the absence of chloroplast protein synthesis further chlorophyll accumulation is prevented. Photodegradation of chlorophyll in the presence of group 2 herbicides involved the participation of O2 - radicals and was accompanied by lipid peroxidation. In all herbicide treatments the catalase activity of the leaves was very low. Only in the presence of group 2 herbicides chloroplast enzymes of cytoplasmic origin (e.g. NADP-glyceraldehyde-3-phosphate dehydrogenase) were also inactivated. Rapid inactivation of catalase as well as of NADP-glyceraldehyde-3-phosphate dehydrogenase was induced by exposure of dim-light-grown herbicide-treated leaves to bright light, also at 0°C. In treatments with herbicides of group 2 also other peroxisomal enzymes (e.g. glycolate oxidate, hydroxy-pyruvate reductase) were affected. The elimination of these peroxisomal enzymes also appeared to depend on photooxidative processes of the chloroplast.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Herbicides;Kirk-Othmer Encyclopedia of Chemical Technology;2004-09-17

2. Herbicides;Kirk-Othmer Encyclopedia of Chemical Technology;2000-12-04

3. Photosynthesis and Herbicides: Effects of Pyridazinones on Chloroplast Function and Biogenesis;Photosynthesis: Photoreactions to Plant Productivity;1993

4. Evaluation of the mechanism of action of the bleaching herbicide SC-0051 by HPLC analysis;Pesticide Biochemistry and Physiology;1989-10

5. Photoinactivation of catalase at low temperature and its relevance to photosynthetic and peroxide metabolism in leaves;Plant, Cell and Environment;1989-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3