On the Gaussian Limiting Distribution of Lattice Points in a Parallelepiped

Author:

Levin Mordechay B.1

Affiliation:

1. Department of Mathematics, Bar-Ilan University, Ramat-Gan, 52900, Israel

Abstract

Abstract Let Γ ⊂ ℝ s be a lattice obtained from a module in a totally real algebraic number field. Let ℛ( θ , N) be the error term in the lattice point problem for the parallelepiped [−θ 1 N 1, θ 1 N 1] × . . . × [−θs Ns , θs Ns ]. In this paper, we prove that ℛ( θ , N)(ℛ, N) has a Gaussian limiting distribution as N→∞, where θ = (θ 1, . . . , θs ) is a uniformly distributed random variable in [0, 1] s , N = N 1 . . . . Ns and σ(ℛ, N) ≍ (log N)(s−1)/2. We obtain also a similar result for the low discrepancy sequence corresponding to Γ. The main tool is the S-unit theorem.

Publisher

Walter de Gruyter GmbH

Reference25 articles.

1. [BW] BAKER, A.—WUSTHOLZ, G.: Logarithmic Forms and Diophantine Geometry, Cambridge University Press, Cambridge, 2007.

2. [Be1] BECK, J.: Randomness ofn2$n\sqrt 2 $ mod 1 and a Ramsey property of the hyperbola. Sets, graphs and numbers (G. Halsz ed. et al.), Sets, graphs and numbers. A birthday salute to Vera T.Ss and Andrs Hajnal. Colloq. Math. Soc. Jnos Bolyai. 60, (1992) 23–66.

3. [Be2] BECK, J.: Randomness in lattice point problems, Discrete Math. 229 (2001), no. 1–3, 29–55.

4. [Be3] BECK, J.: Probabilistic Diophantine Approximation: Randomness in Lattice Point Counting, Springer, New York, 2014.

5. [BC] BECK, J.—CHEN, W. W. L.: Irregularities of Distribution. Cambridge Univ. Press, Cambridge, 1987.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3