On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions

Author:

Verger-Gaugry Jean-Louis1

Affiliation:

1. LAMA, CNRS UMR 5127, Université Savoie Mont Blanc, 73376 - Le Bourget-du-Lac, France

Abstract

Abstract Let n ≥ 2 be an integer and denote by θn the real root in (0, 1) of the trinomial Gn (X) = −1 + X + Xn . The sequence of Perron numbers ( θ n 1 ) n 2 $(\theta _n^{ - 1} )_{n \ge 2} $ tends to 1. We prove that the Conjecture of Lehmer is true for { θ n 1 | n 2 } $\{ \theta _n^{ - 1} |n \ge 2\} $ by the direct method of Poincaré asymptotic expansions (divergent formal series of functions) of the roots θn , zj,n , of Gn (X) lying in |z| < 1, as a function of n, j only. This method, not yet applied to Lehmer’s problem up to the knowledge of the author, is successfully introduced here. It first gives the asymptotic expansion of the Mahler measures M ( G n ) = M ( θ n ) = M ( θ n 1 ) ${\rm{M}}(G_n ) = {\rm{M}}(\theta _n ) = {\rm{M}}(\theta _n^{ - 1} )$ of the trinomials Gn as a function of n only, without invoking Smyth’s Theorem, and their unique limit point above the smallest Pisot number. Comparison is made with Smyth’s, Boyd’s and Flammang’s previous results. By this method we obtain a direct proof that the conjecture of Schinzel-Zassenhaus is true for { θ n 1 | n 2 } $\{ \theta _n^{ - 1} |n \ge 2\} $ , with a minoration of the house , and a minoration of the Mahler measure M(Gn ) better than Dobrowolski’s one. The angular regularity of the roots of Gn , near the unit circle, and limit equidistribution of the conjugates, for n tending to infinity (in the sense of Bilu, Petsche, Pritsker), towards the Haar measure on the unit circle, are described in the context of the Erdős-Turán-Amoroso-Mignotte theory, with uniformly bounded discrepancy functions.

Publisher

Walter de Gruyter GmbH

Reference97 articles.

1. [AM] ADLER, R. L.—MARCUS, B.: Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219, iv–84.

2. [A1] AMOROSO, F.: Sur des polynômes de petites mesures de Mahler, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 11-14.

3. [A2] AMOROSO, F.: Algebraic numbers close to 1: results and methods, in: Number Theory (Tiruchirapalli, India 1996), (V. K. Murty and M. Waldschmidt, Eds.) Amer. Math. Soc., Providence, Contemp. Math. 210 (1998), pp. 305–316.

4. [ADd1] AMOROSO, F.—DAVID, S.: Le théorème de Dobrowolski en dimension supérieure, C. R. Acad. Sci. paris Sér. I Math. 326 (1998), 1163–1166.

5. [ADd2] AMOROSO, F.—DAVID, S.: Le problème de Lehmer en dimension supérieure, J. Reine Angew. Math. 513 (1999), 145–179.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enumeration of Both-Ends-Fixed <i>k</i>-Ary Necklaces and Its Applications;IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences;2023-03-01

2. On a Class of Lacunary Almost Newman Polynomials Modulo P and Density Theorems;Uniform distribution theory;2022-05-31

3. Properties of trinomials of height at least 2;Rocky Mountain Journal of Mathematics;2022-04-01

4. Alphabets, rewriting trails and periodic representations in algebraic bases;Research in Number Theory;2021-09-28

5. On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials;Arnold Mathematical Journal;2018-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3