Affiliation:
1. LAMA, CNRS UMR 5127, Université Savoie Mont Blanc, 73376 - Le Bourget-du-Lac, France
Abstract
Abstract
Let n ≥ 2 be an integer and denote by θn
the real root in (0, 1) of the trinomial Gn
(X) = −1 + X + Xn
. The sequence of Perron numbers
(
θ
n
−
1
)
n
≥
2
$(\theta _n^{ - 1} )_{n \ge 2} $
tends to 1. We prove that the Conjecture of Lehmer is true for
{
θ
n
−
1
|
n
≥
2
}
$\{ \theta _n^{ - 1} |n \ge 2\} $
by the direct method of Poincaré asymptotic expansions (divergent formal series of functions) of the roots θn
, zj,n
, of Gn
(X) lying in |z| < 1, as a function of n, j only. This method, not yet applied to Lehmer’s problem up to the knowledge of the author, is successfully introduced here. It first gives the asymptotic expansion of the Mahler measures
M
(
G
n
)
=
M
(
θ
n
)
=
M
(
θ
n
−
1
)
${\rm{M}}(G_n ) = {\rm{M}}(\theta _n ) = {\rm{M}}(\theta _n^{ - 1} )$
of the trinomials Gn
as a function of n only, without invoking Smyth’s Theorem, and their unique limit point above the smallest Pisot number. Comparison is made with Smyth’s, Boyd’s and Flammang’s previous results. By this method we obtain a direct proof that the conjecture of Schinzel-Zassenhaus is true for
{
θ
n
−
1
|
n
≥
2
}
$\{ \theta _n^{ - 1} |n \ge 2\} $
, with a minoration of the house , and a minoration of the Mahler measure M(Gn
) better than Dobrowolski’s one. The angular regularity of the roots of Gn
, near the unit circle, and limit equidistribution of the conjugates, for n tending to infinity (in the sense of Bilu, Petsche, Pritsker), towards the Haar measure on the unit circle, are described in the context of the Erdős-Turán-Amoroso-Mignotte theory, with uniformly bounded discrepancy functions.
Reference97 articles.
1. [AM] ADLER, R. L.—MARCUS, B.: Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219, iv–84.
2. [A1] AMOROSO, F.: Sur des polynômes de petites mesures de Mahler, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 11-14.
3. [A2] AMOROSO, F.: Algebraic numbers close to 1: results and methods, in: Number Theory (Tiruchirapalli, India 1996), (V. K. Murty and M. Waldschmidt, Eds.) Amer. Math. Soc., Providence, Contemp. Math. 210 (1998), pp. 305–316.
4. [ADd1] AMOROSO, F.—DAVID, S.: Le théorème de Dobrowolski en dimension supérieure, C. R. Acad. Sci. paris Sér. I Math. 326 (1998), 1163–1166.
5. [ADd2] AMOROSO, F.—DAVID, S.: Le problème de Lehmer en dimension supérieure, J. Reine Angew. Math. 513 (1999), 145–179.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献