1. [1] BLANCHARD, F.: Systèmes codés, Theor. comput. sci. 44 (1986), 17–49; http://ac.els-cdn.com/0304397586901088/1-s2.0-0304397586901088-main.pdf?_tid=41cf34ba-8e58-11e5-ad0a-00000aab0f6c&acdnat=1447894721_a3eec8fd742db41891f4efe165b0ef8b
2. [2] BOYLE, M.—PETERSEN, K.: Hidden Markov processes in the context of symbolic dynamics, London Mathematical Society Lecture Note Series 385 (2011), 5–71; http://www.unc.edu/math/Faculty/petersen/Papers/06Jan2010.pdf
3. [3] MARCUS, B.—PETERSEN, K.—WEISSMAN, T. (EDS.): Entropy of Hidden Markov Processes and Connections to Dynamical Systems. Papers from the Banff International Research Station workshop, Banff, Canada, October 2007; http://books.google.fr/books?id=1ZzzHpfbIAC&pg=PA223&lpg=PA223&dq=%22Entropy+of+hidden+Markov+processes+and+connections+to+dynamical+systems%22&source=bl&ots=2wm0Ng1–tM&sig=PKwt4sipcqY1Vh7mX8n7zMOegkg&hl=en&sa=X&ei=PGhYVOqJD4LfPZyEgIAN&ved=0CCoQ6AEwBA#v=onepage&q=%22Entropy%20of%20hidden%20Markov%20processes%20and%20connections%20to%20dynamical%20systems%22&f=false
4. [4] DHARMADHIKARI, S. W.: Functions of finite Markov chains, Ann. Math. Stat. 34 (1963), 1022–1032; http://projecteuclid.org/download/pdf_1/euclid.aoms/1177704025
5. [5] DUMONT, J.-M.—SIDOROV, N.—THOMAS, A.: Number of representations related to linear recurrent basis, Acta Arithmetica 88 (1999), 371–396; http://matwbn.icm.edu.pl/ksiazki/aa/aa88/aa8847.pdf