Affiliation:
1. Department of Mathematics , Aligarh Muslim University , Aligarh , India
Abstract
Abstract
Let
𝒜
{\mathcal{A}}
be a prime ring equipped with an involution ‘
*
{*}
’ of order 2 and let
m
≠
n
{m\neq n}
be some fixed positive integers such that
𝒜
{\mathcal{A}}
is
2
m
n
(
m
+
n
)
|
m
-
n
|
{2mn(m+n)|m-n|}
-torsion free. Let
𝒬
m
s
(
𝒜
)
{\mathcal{Q}_{ms}(\mathcal{A})}
be the maximal symmetric ring of quotients of
𝒜
{\mathcal{A}}
and consider the mappings
ℱ
{\mathcal{F}}
and
𝒢
:
𝒜
→
𝒬
m
s
(
𝒜
)
{\mathcal{G}:\mathcal{A}\to\mathcal{Q}_{ms}(\mathcal{A})}
satisfying the relations
(
m
+
n
)
ℱ
(
a
2
)
=
2
m
ℱ
(
a
)
a
*
+
2
n
a
ℱ
(
a
)
(m+n)\mathcal{F}(a^{2})=2m\mathcal{F}(a)a^{*}+2na\mathcal{F}(a)
and
(
m
+
n
)
𝒢
(
a
2
)
=
2
m
𝒢
(
a
)
a
*
+
2
n
a
ℱ
(
a
)
(m+n)\mathcal{G}(a^{2})=2m\mathcal{G}(a)a^{*}+2na\mathcal{F}(a)
for all
a
∈
𝒜
{a\in\mathcal{A}}
. Using the theory of functional identities and the structure of involutions on matrix algebras, we prove that if
ℱ
{\mathcal{F}}
and
𝒢
{\mathcal{G}}
are additive, then
𝒢
=
0
{\mathcal{G}=0}
. We also show that, in case ‘
*
*
’ is any nonidentity anti-automorphism, the same conclusion holds if either ‘
*
{*}
’ is not identity on
𝒵
(
𝒜
)
{\mathcal{Z}(\mathcal{A})}
or
𝒜
{\mathcal{A}}
is a PI-ring.
Reference22 articles.
1. S. Ali and A. Fošner,
On generalized
(
m
,
n
)
(m,n)
-derivations and generalized
(
m
,
n
)
(m,n)
-Jordan derivations in rings,
Algebra Colloq. 21 (2014), no. 3, 411–420.
2. K. I. Beidar and W. S. Martindale, III,
On functional identities in prime rings with involution,
J. Algebra 203 (1998), no. 2, 491–532.
3. K. I. Beidar, W. S. Martindale, III and A. V. Mikhalev,
Rings with Generalized Identities,
Monogr. Textb. Pure Appl. Math. 196,
Marcel Dekker, New York, 1996.
4. D. Bennis, B. Dhara and B. Fahid,
More on the generalized
(
m
,
n
)
(m,n)
-Jordan derivations and centralizers on certain semiprime rings,
Bull. Iranian Math. Soc. 47 (2021), no. 1, 217–224.
5. M. Brešar, M. A. Chebotar and W. S. Martindale, III,
Functional Identities,
Front. Math.,
Birkhäuser, Basel, 2007.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献