Affiliation:
1. Department of Mathematics , Nanjing University , Nanjing 210093 , P. R. China
2. School of Mathematics and Physics , Lanzhou Jiaotong University , Lanzhou 730070 , P. R. China
3. School of Mathematical Sciences , Qufu Normal University , Qufu 273165 , P. R. China
Abstract
Abstract
Let A and B be Artin algebras and let M be an
(
A
,
B
)
(A,B)
-bimodule with
M
A
{}_{A}M
and
M
B
M_{B}
finitely generated.
In this paper, we construct tilting pairs of subcategories and Wakamatsu tilting subcategories over an upper triangular matrix Artin algebra
Λ
=
(
A
M
0
B
)
{\Lambda=\bigl{(}\begin{smallmatrix}A&M\\
0&B\\
\end{smallmatrix}\bigr{)}}
using tilting pairs and Wakamatsu tiling subcategories over A and B. Let
𝒞
{\mathcal{C}}
be a subcategory of
A
-mod
{A\mbox{-mod}}
and let
𝒟
{\mathcal{D}}
be a subcategory of
B
-mod
{B\mbox{-mod}}
. Consider the subcategory of left Λ-modules
𝔅
𝒟
𝒞
=
{
(
X
Y
)
f
:
f
is a monomorphism,
Y
∈
𝒟
and
Coker
f
∈
𝒞
}
{\mathfrak{B}^{\mathcal{C}}_{\mathcal{D}}=\{{\bigl{(}\begin{smallmatrix}{X}\\
{Y}\\
\end{smallmatrix}\bigr{)}_{f}}:\text{$f$ is a monomorphism, $Y\in\mathcal{D}$ %
and $\operatorname{Coker}f\in\mathcal{C}$}\}}
.
We prove the following results: (1) Assume that
M
⊗
B
𝒯
′
⊆
𝒯
{M\otimes_{B}\mathcal{T}^{\prime}\subseteq\mathcal{T}}
,
M
⊗
B
𝒞
′
⊆
𝒞
{M\otimes_{B}\mathcal{C}^{\prime}\subseteq\mathcal{C}}
and
Tor
i
B
(
M
,
𝒯
′
)
=
0
{\mathrm{Tor}^{B}_{i}(M,\mathcal{T}^{\prime})=0}
for all
i
≥
1
{i\geq 1}
. Then
(
𝒞
,
𝒯
)
{(\mathcal{C},\mathcal{T})}
and
(
𝒞
′
,
𝒯
′
)
{(\mathcal{C}^{\prime},\mathcal{T}^{\prime})}
are n-tilting pairs respectively in
A
-
mod
{A\text{-}\mathrm{mod}}
and
B
-
mod
{B\text{-}\mathrm{mod}}
if and only if
(
𝔅
𝒞
′
𝒞
,
𝔅
𝒯
′
𝒯
)
{(\mathfrak{B}^{\mathcal{C}}_{\mathcal{C}^{\prime}},\mathfrak{B}^{\mathcal{T}}%
_{\mathcal{T}^{\prime}})}
is an n-tilting pair in
Λ
-
mod
{\Lambda\text{-}\mathrm{mod}}
. (2) Assume that
M
⊗
B
𝒱
⊆
𝒲
{M\otimes_{B}\mathcal{V}\subseteq\mathcal{W}}
and
Tor
i
B
(
M
,
𝒱
⊥
)
=
0
{\mathrm{Tor}^{B}_{i}(M,{{}^{\perp}\mathcal{V}})=0}
for all
i
≥
1
{i\geq 1}
. If
𝒲
{\mathcal{W}}
and
𝒱
{\mathcal{V}}
are Wakamatsu tilting subcategories respectively in
A
-
mod
{A\text{-}\mathrm{mod}}
and
B
-
mod
{B\text{-}\mathrm{mod}}
, then
𝔅
𝒱
𝒲
{\mathfrak{B}^{\mathcal{W}}_{\mathcal{V}}}
is a Wakamatsu tilting subcategory in
Λ
-
mod
{\Lambda\text{-}\mathrm{mod}}
.
Funder
National Natural Science Foundation of China