Convolution equations on the Lie group G = (-1,1)

Author:

Duduchava Roland1ORCID

Affiliation:

1. Institute of Mathematics , IV , The University of Georgia , 77a Merab Kostava St, 0171; and A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 2 Merab Aleksidze II Lane , Tbilisi 0193 , Georgia

Abstract

Abstract The interval G = ( - 1 , 1 ) {G=(-1,1)} turns into a Lie group under the group operation x y := ( x + y ) ( 1 + x y ) - 1 {x\circ y:=(x+y)(1+xy)^{-1}} , x , y G {x,y\in G} . This enables us to define of the invariant measure d G ( x ) := ( 1 - x 2 ) - 1 d x {dG(x):=(1-x^{2})^{-1}dx} and the Fourier transformation G {{\mathcal{F}}{}_{G}} on the interval G and, as a consequence, we can consider Fourier convolution operators W G , a 0 := a G - 1 G {W^{0}_{G,a}:={\mathcal{F}}{}_{G}^{-1}a{\mathcal{F}}{}_{G}} on G. This class of convolutions includes the celebrated Prandtl, Tricomi and Lavrentjev–Bitsadze equations and, also, differential equations of arbitrary order with the generic differential operator 𝔇 G u ( x ) = ( 1 - x 2 ) u ( x ) {\mathfrak{D}_{G}u(x)=(1-x^{2})u^{\prime}(x)} , x G {x\kern-1.0pt\in\kern-1.0ptG} . Equations are solved in the scale of generic Bessel potential p s ( G , d G ( x ) ) {\mathbb{H}^{s}_{p}(G,dG(x))} , 1 p {1\kern-1.0pt\leqslant\kern-1.0ptp\kern-1.0pt\leqslant\kern-1.0pt\infty} , and Hölder–Zygmund ν ( G ) {\mathbb{Z}^{\nu}(G)} , 0 < μ , ν < {0<\mu,\nu<\infty} , spaces, adapted to the group G. The boundedness of convolution operators (the problem of multipliers) is discussed. The symbol a ( ξ ) {a(\xi)} , ξ {\xi\in\mathbb{R}} , of a convolution equation W G , a 0 u = f {W^{0}_{G,a}u=f} defines solvability as follows: the equation is uniquely solvable if and only if the symbol a is elliptic. The solution is written explicitly with the help of the inverse symbol. Also, we shortly touch upon the multidimensional analogue – the Lie group G n {G^{n}} .

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference20 articles.

1. I. V. Andronov and N. I. Andronov, Plane wave diffraction by a strongly elongated three-axis ellipsoid, Acoust. Phys. 67 (2021), 341–350.

2. I. V. Andronov and V. E. Petrov, Diffraction by an impedance strip at almost grazing incidence, IEEE Trans. Antennas Propagation 64 (2016), no. 8, 3565–3572.

3. R. Duduchava, Integral Equations in Convolution with Discontinuous Presymbols, Singular Integral Equations with Fixed Singularities, and Their Applications to Some Problems of Mechanics, BSB B. G. Teubner, Leipzig, 1979.

4. R. Duduchava, On multidimensional singular integral operators. I. The half-space case, J. Operator Theory 11 (1984), no. 1, 41–76.

5. R. Duduchava, On multidimensional singular integral operators. II. The case of compact manifolds, J. Operator Theory 11 (1984), no. 2, 199–214.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On a class of Hausdorff type operators on interval;Mathematical Methods in the Applied Sciences;2024-06-11

2. Fractional Mixed Weighted Convolution and Its Application in Convolution Integral Equations;Journal of Mathematics;2024-03-04

3. Generic Bessel Potential Spaces on Lie Groups;Trends in Mathematics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3