Two presentations of a weak type inequality for geometric maximal operators

Author:

Hagelstein Paul1,Oniani Giorgi2,Stokolos Alex3

Affiliation:

1. Department of Mathematics , Baylor University , Waco , Texas 76798 , USA

2. School of Computer Science and Mathematics , Kutaisi International University , Kutaisi 4600 , Georgia

3. Department of Mathematical Sciences , Georgia Southern University , Statesboro , Georgia 30460 , USA

Abstract

Abstract Let Φ : [ 0 , ) [ 0 , ) {\Phi:[0,\infty)\rightarrow[0,\infty)} be a Young’s function satisfying the Δ 2 {\Delta_{2}} -condition and let M {M_{\mathcal{B}}} be the geometric maximal operator associated to a homothecy invariant basis {\mathcal{B}} acting on measurable functions on n {\mathbb{R}^{n}} . Let Q be the unit cube in n {\mathbb{R}^{n}} and let L Φ ( Q ) {L^{\Phi}(Q)} be the Orlicz space associated to Φ with the norm given by f L Φ ( Q ) := inf { c > 0 : Q Φ ( | f | c ) 1 } . \|f\|_{L^{\Phi}(Q)}:=\inf\Biggl{\{}c>0:\int_{Q}\Phi\bigg{(}\frac{|f|}{c}\bigg{% )}\leq 1\Bigg{\}}. We show that M {M_{\mathcal{B}}} satisfies the weak type estimate | { x n : M f ( x ) > α } | C 1 n Φ ( | f | α ) |\{x\in\mathbb{R}^{n}:M_{\mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{1}% \int_{\mathbb{R}^{n}}\Phi\bigg{(}\frac{|f|}{\alpha}\bigg{)} for all measurable functions f on n {\mathbb{R}^{n}} and α > 0 {\alpha>0} if and only if M {M_{\mathcal{B}}} satisfies the weak type estimate | { x Q : M f ( x ) > α } | C 2 f L Φ ( Q ) α |\{x\in Q:M_{\mathcal{B}}\kern 1.422638ptf(x)>\alpha\}|\leq C_{2}\frac{\|f\|_{% L^{\Phi}(Q)}}{\alpha} for all measurable functions f supported on Q and α > 0 {\alpha>0} . As a consequence of this equivalence, we prove that if Φ satisfies the above conditions and {\mathcal{B}} is a homothecy invariant basis differentiating integrals of all measurable functions f on n {\mathbb{R}^{n}} such that n Φ ( | f | ) < {\int_{\mathbb{R}^{n}}\Phi(|f|)<\infty} , then the associated maximal operator M {M_{\mathcal{B}}} satisfies both of the above weak type estimates.

Funder

Simons Foundation

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3