Affiliation:
1. Department of Mathematics , Payame Noor University , P.O. Box 19395-3697 , Tehran , Iran
Abstract
Abstract
Let
ℳ
{\mathcal{M}}
be
a Hilbert
C
*
{\mathrm{C}^{*}}
-module. In this paper, we show that there is a one-to-one correspondence between all Hilbert
C
*
{\mathrm{C}^{*}}
-module higher derivations
{
φ
n
:
ℳ
→
ℳ
}
n
=
0
∞
{\{\varphi_{n}:\mathcal{M}\rightarrow\mathcal{M}\}_{n=0}^{\infty}}
with
φ
0
=
I
{\varphi_{0}=I}
satisfying
φ
n
(
〈
x
,
y
〉
z
)
=
∑
i
+
j
+
k
=
n
〈
φ
i
(
x
)
,
φ
j
(
y
)
〉
φ
k
(
z
)
(
x
,
y
,
z
∈
ℳ
,
n
∈
ℕ
∪
{
0
}
)
\varphi_{n}(\langle x,y\rangle z)=\sum_{i+j+k=n}\langle\varphi_{i}(x),\varphi_%
{j}(y)\rangle\varphi_{k}(z)\quad(x,y,z\in\mathcal{M},\,n\in\mathbb{N}\cup\{0\})
and all Hilbert
C
*
{\mathrm{C}^{*}}
-module derivations
{
ψ
n
:
ℳ
→
ℳ
}
n
=
1
∞
{\{\psi_{n}:\mathcal{M}\rightarrow\mathcal{M}\}_{n=1}^{\infty}}
satisfying
ψ
n
(
〈
x
,
y
〉
z
)
=
〈
ψ
n
(
x
)
,
y
〉
z
+
〈
x
,
ψ
n
(
y
)
〉
z
+
〈
x
,
y
〉
ψ
n
(
z
)
(
x
,
y
,
z
∈
ℳ
,
n
∈
ℕ
)
,
\psi_{n}(\langle x,y\rangle z)=\langle\psi_{n}(x),y\rangle z+\langle x,\psi_{n%
}(y)\rangle z+\langle x,y\rangle\psi_{n}(z)\quad(x,y,z\in\mathcal{M},\,n\in%
\mathbb{N}),
and we show that for every Hilbert
C
*
{\mathrm{C}^{*}}
-module higher derivation
{
φ
n
}
n
=
0
∞
{\{\varphi_{n}\}_{n=0}^{\infty}}
on
ℳ
{\mathcal{M}}
, there exists a unique sequence of Hilbert
C
*
{\mathrm{C}^{*}}
-module derivations
{
ψ
n
}
n
=
1
∞
{\{\psi_{n}\}_{n=1}^{\infty}}
on
ℳ
{\mathcal{M}}
such that
ψ
n
=
∑
k
=
1
n
(
∑
∑
j
=
1
k
r
j
=
n
(
-
1
)
k
-
1
r
1
φ
r
1
φ
r
2
…
φ
r
k
)
\psi_{n}=\sum_{k=1}^{n}\biggl{(}\sum_{\sum_{j=1}^{k}r_{j}=n}(-1)^{k-1}~{}r_{1}%
\varphi_{r_{1}}\varphi_{r_{2}}\dots\varphi_{r_{k}}\biggr{)}
for all positive integers n, where the inner summation is taken over all positive integers
r
j
{r_{j}}
with
∑
j
=
1
k
r
j
=
n
{\sum_{j=1}^{k}r_{j}=n}
.
Reference12 articles.
1. M. A. Ansari, M. Ashraf and M. Shamim Akhter,
Characterization of Lie-type higher derivations of triangular rings,
Georgian Math. J. 30 (2023), no. 1, 33–46.
2. P. E. Bland,
Higher derivations on rings and modules,
Int. J. Math. Math. Sci. (2005), no. 15, 2373–2387.
3. W. Cortes and C. Haetinger,
On Jordan generalized higher derivations in rings,
Turkish J. Math. 29 (2005), no. 1, 1–10.
4. M. B. Ghaemi and B. Alizadeh,
Approximately Higher Hilbert
C
*
{\mathrm{C}^{*}}
-modules derivations,
Int. J. Nonlinear Anal. Appl. 1 (2002), no. 2, 36–43.
5. C. Haetinger,
Higher derivations on Lie ideals,
TEMA Tend. Mat. Apl. Comput 3 (2002), 141–145.