Biological evaluation of micro-patterned hyaluronic acid hydrogel for bone tissue engineering

Author:

Park Hyo Seung,Lee Su Yeon,Yoon Hyunsik,Noh Insup

Abstract

Abstract Design of micro-patterning of hydrogel is of critical importance in both understanding cellular behaviors and mimicking controlled microenvironments and architectures of diverse well-organized tissues. After micro-patterning of hyaluronic acid (HA) hydrogel on a poly(dimethyl siloxane) substrate, its physical and biological properties have been compared with those of a non-patterned hydrogel for its possible applications in bone tissue engineering. The micro-patterned morphologies of HA hydrogel in both swollen and dehydrated forms have been observed with light microscope and scanning electron microscope, respectively, before and after in vitro cell culture. When MC3T3 bone cells were in vitro cultured on both HA hydrogels, the micro-patterned one shows excellence in cell proliferation and lining for 7 days along the micro-pattern paths over those of the non-patterned one, which have shown less cell-adhesiveness. The cytotoxicity of the micro-patterned HA hydrogels was in vitro evaluated by the assays of MTT, BrdU and Neutral red. The viability and morphology of MC3T3 cells on both HA hydrogels were observed with a fluorescence microscope by the live & dead assay, where their viability was confirmed by staining of F-actin development. The results of their H&E staining showed that both micro-patterned and non-patterned hydrogels induced development of tissue regeneration as observed by cell attachment, proliferation, and survivability, but the micro-patterned one induced distinctive patterning of both better initial cells adhesion on the micro-patterns and subsequently development of their proliferation and extracellular matrix, which were considered as important characteristics in their applications to tissue engineering.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3