Photochemically induced radical reactions with furanones

Author:

Oelgemöller Michael1,Hoffmann Norbert2

Affiliation:

1. 1College of Science, Technology and Engineering, James Cook University, Townsville, QLD 4811, Australia

2. 2CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France

Abstract

AbstractRadicals are easily generated via hydrogen transfer form secondary alcohols or tertiary amines using photochemical sensitization with ketones. They can subsequently add to the electron deficient double bond of furanones. The addition of the alcohols is particularly efficient. Therefore, this reaction was used to characterize and to compare the efficiency of different photochemical continuous flow microreactors. A range of micro-structured reactors were tested and their performances evaluated. The enclosed microchip enabled high space-time-yields but its microscopic dimensions limited its productivity. In contrast, the open microcapillary model showed a greater potential for scale-up and reactor optimization. A 10-microcapillary reactor was therefore constructed and utilized for typical R&D applications. Compared to the corresponding batch processes, the microreactor systems gave faster conversions, improved product qualities and higher yields. Similar reactions have also been carried out with electronically excited furanones and other α,β-unsaturated ketones. In this case, hydrogen is transferred directly to the excited olefin. This reaction part may occur either in one step, i.e., electron and proton are transferred simultaneously, or it may occur in two steps, i.e., the electron is transferred first and the proton follows. In the first case, a C–C bond is formed in the α position of the α,β-unsaturated carbonyl compound and in the second case this bond is formed in the β position. For the first reaction, the influence of stereochemical elements of the substrate on the regioselectivity of the hydrogen abstraction on the side chain has been studied.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3