Effect of Thermal Conductivity on Nozzle Guide Vane Internal Surface Temperature Distribution

Author:

Pujari Arun Kumar1,Prasad B. V. S. S. S1,Sitaram Nekkanti1

Affiliation:

1. Thermal Turbomachines Laboratory, Department of Mechanical Engineering , Indian Institute of Technology Madras , Chennai 600036 , India

Abstract

Abstract Conjugate heat transfer analysis is carried out in a cascade domain for a nozzle guide vane. The nozzle guide vane is internally cooled by jet impingement cooling, and the external surface is cooled by film cooling. A computational study was carried out with three different materials, having conductivity values of 0.0048, 0.2 and 1.1 W/m.K. Distribution of local surface temperature along the leading edge, pressure and suction surface is reported. The leading edge region showed the maximum increase in internal surface temperature as the conductivity increased among the different regions of the vane internal surface. However, the pressure and suction surfaces showed relatively less increase in the surface temperature distribution. In order to validate the computational result, the obtained temperature data were compared with experimentally obtained surface temperature data. The flow phenomena like jet lift-off and self-induced cross-flow affect the local temperature distribution differently in the three materials. For a constant mainstream and coolant flow, the surface temperature gradient is higher for the lower conductivity material, and the gradient decreases as conductivity increases. Hence, a material with higher conductivity is desired in a combined impingement and film cooled nozzle guide vane, to increase the durability of the vane.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3